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BUCKLING OF LOW ARCBES OR CURVED BEAM

OF SMALL CURVATURE

By Y. C. Fung and A. Kaplan

SUMMARY

When a low arch (a thin curved beam of small curvature) is subJetted
to a lateral loading acting toward the center of curvature, the axial.
thrust induced by the bending of,the srch may cause the arch to buckle
so that the curvature becomes suddenly reversed. The critical lateral
loading depends on the dimensions and rigidity of the arch, the elastici~
of the end fixation, the type of load distribution, and the initial
curvature of the arch. A general solution of the problem is given in
this paper, using the classical buc~ing criterion which is based on the
stability with respect to infinitesimal displacements about the equilib-
rium positions.

For a sinusoidal srch under sinusoidal loading, the critical load .
can be expressed exactly as a simple function’of the beam dimension
parameters. For other arch shapes and load distributions, approximate
values of the critical load can be obtained by summing a few terms of
a rapidly converging Fourier series. The effects of initial end thrust
and axial md lateral elastic support are discussed.

The buckling load based on the ener~ criterion of K&& and Tsien
is also calculated. The results for both the classical and the ener~
criteria sre compared with experiments made on a series of centrally
loaded, pin-ended arches. For larger values of a dimensionless param-
eter Al, which is proportional to the ratio of the arch rise .tothe

arch thickness, the experimental critical buckling loads a~eed @te
well with the classical criterion, but, for stier values of Al, the

experimental critical loads were appreciably below those calculated from
the classical criterion, although they were always above those obtained
from the energy criterion.

INTRODUCTION

An srch subjected to lateral
Generally speaking, there are two

..—.4..- .———.—.

loads may become elastically unstable,
possibilities of buckling:

.— — —— . . . . .
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(1) If the rise of the arch (a in fig. 1) is of the same order as
the span of the arch, then it is possible for the arch to buckle at the
critical presswe in the mode indicated by the dashed curve in figure 1.
Buckling of this type can be safely assumed to be “inextensional,”as
suggested by Lord Rayleighy and) as such, has been discussed by
5. Hurlbrink, E. Chwal-la,R. Mayer, E. Gab=, E. L. Nfcolaf~ and
S. Timoshenko. (See Timoshedco’shook, reference 1, for references to
original yapers.) In all these studies, circular arches under uniformlY
distributed lateral loading are assumed, with various types of end
fixations.

(2) If the rise a of the arch is much smaller than the span L,
(fig. 2), then the induced axial thrust plays an important role in the
elastic stability. The besm may become unstable and suddenly reverse
its Cwvatwe, j~pi~, for example, from the solid-line position in
figure 2 to the dashed-line position.

It is the object of the present paper to treat arches of small rise;
therefore, the buckling deformation will be “etiensional” rather than
“inextensional.“ It will be shown that the variation in the initial
curvature of the beam has a very important effect on the critical load.
Furthermore, with a view to possible applications to t~n-wfng design
problems, besms acted on by i.nfti.aluthrustand those with elastic SUP-
ports will be discussed.

The ssme problem has been treated before by Biezeno (reference 2),
Marguerre (references 3 and 4), Timoshenko (reference 1), and llriedrichs
(reference 5).1 Biezeno and Timoshenko derived the fundamental dif-
ferential equation in the same manner as ttis paper, w~le Marwerre
and Friedrichs derived their equations by variational principles. The
resulting equations sre the ssme. Biezeno treated a circular arch under
a concentrated load at the center and Marguerre and FYiedrichs, a cir-
culsr arch under uniformly distributed pressure; all arrived at the main
features of the buckling problem, but the calculations are rather involved.
Timoshenko assumed that the center line of the deflected beam as well as
the initial shape is a half wave of a sine curve and arrived at a very
simple solution. The restriction of the buckling mode to the symmetrical
one, however, sometimes gives the critical buckling load manyfold too
high in a certain range of arch rise.

The buckling criterion usedby the authors of references 1 to 5
is the classical one which is based on the stabiliw with respect to

lAfter completion of the present work, it was learned that Hoff and
Bruce (reference 6) treated a similar problem from the point of view of
dynsmic stability. Part of Hoff and Bruce’s work coincides almost
identically with the present report.
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infinitesimal displacements about the equilibrium positions. But
Friedrichs, in reference 5, also calculated the buckling load on the
basis of Tsien’s ener~ criterion, which is based on finite displace-
ments. The ener~ criterion yields a buckling load much lower than
that obtained from the classical criterion. It is not evident which
of these two criteria corresponds to the real practical situation.
Therefore in this paper, both criteria will be used and the results
will be compared with experiments.

3

This work was conducted at the California Institute of Technolog
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics.

sY1.iBou3

A cross-sectional area of beam

a rise of arch

E Young’s modulus

F dead-weight load (in section “Buckling Load Based on K&w&n

,’

9

and Tsien’s Energy Criterion”)

H axial compression at ends of beam

Ho initial thrust in beam

I moment of inertia (or second moment) of cross

%/K=IT 12Q3

‘=+%=?
L span of besm

2

M bending moment; positive when it tends to put
beam in compression

M. bending moment due to lateral forces alone

section of beam

upper side of

.
.— .—..— —.—— . _——.
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shearing force in beam; positive when
J

Q & produces
Ax

positive moment

lateral pressme per unit length of beam; positive downward
(in negative y-direction)

characteristic lateral pressure per unit length of beam

thickness of beam

strain energy

change in thrust in lateral support

total load beam can sustain tithout buckling

actual and initial curve of center

spring constant of arch support

spring constant or lateral support

line of beam, respectively

distance”spring-supportedend of beam is displaced

deviation ratio (am/al)

radius of circular-arc

bending stress in beam

axial stress in beam

arch

I

,,
0

‘1

,,

c’ I

.i

UP. (#EI/L2)/A

$ total ener~ for dead-weight loading

Subscripts:

class classical criterion

cone concentrated loading

cr critical

r

. ,’

II ,,.+
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ener~ energy criterion

exp experimental

max maximum

sine sinusoidal loading

Unif uniform loading

Nondimensional coefficients:

Let

.

Then

;,

q = <f(x)

.

HOL2
s==

(m=l,2,3, ...)

(m=l, 2, 3, .-. .)

- —. —.
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GENERAL ANALYSIS

Consider a thin curved beam of small curvature, one end of which
is hinged, that is, it is free to rotate but is fixed in position, while
the other end of the beam is attached to a spring, with a spring con-
stant a. When the spring-supportedend is displaced by a distance A,
the thrust induced in the

where Ho is the initial
Before the application of
beam is Ho and the beam

Fourier series:

spring will be

H=~+ti (1) I

thrust built in the beam.2 (See fig. 3.)
the lateral load q(x); the axial load in the
center line is repres~nted by the following

y. = E ML sin% (2)
m=l

Under the lateral load q, the displaced center line can be written
as

w

y. I
m=l

Assume that IYol and Iyl

lam! and 1%1 are much smaller
htigeneous” material,

so that (dy/dX)2 is
thickness of the beam
beam. Then the usual

of constant

(3)

“1
me much smaller than L, and hence

than 1; that the beam is made of I

cross section, and with small curvature .

negligible in comparison with 1; and that the
is much smaller than the radius of curvature of the
beam theory gives

()~1 d2y d2yo = ~—- —
~2 &

(4)

%0 generality is lost by treating this case of one end spring
instead of the case with both ends of the beam elastically supported
because the springs at both ends can be replaced by a single spring at
one end.

,1
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t

I
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where M is the increase
q(x)●

From statics,

M=

Substituting equation (5)

dQ
remembering that, ~ = -q

7

in bending moment due to the application of

r Qdx-(Hy-H~o) (5)

into equation (4) and differentiatingtwice,

and that the axial thrust in the beam H can

be regarded as constant by the assumption of small curvature, the equa-
tion of equilibrium is obtaine”d:

To find the thrust
center line of the beam

.,,

H, it is noted
is

where small quantities of higher orders

that the shortening of the

are neglected. It is assumed

(6)

(7)

that the end support spring is rather strong, so that A is very small
compared with L. (Otherwise the problem becomes one of a simple bending,
with no possible difficulty.) Hence

EA(AL)
H=Ho+=

=Ho+%J&y-(#J+ (8)

__ ._ .—— L —.— .—— — — — —
— ..—.—-—
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.

On the other hand, the deflection A is connected with the spring
constant CL by equation (l). Elimi~ting A between equations (1)
and (8), substituting equations (2) and (3) for y and Y. into the
result, and integrating, there is obtained

(9) “

where

(lo)

L ,,

Substituting equations (2) and (3) again into equation (6) and using
equation (9), there is obtained now the equation of equilibrium expressed
in terms of the Fourier coefficients: ‘

— —

(n)

The boundary conditions are already satisfied.

Expand q= ~f(x) into a Fourier series:

(12) ‘

where

J
L

%=$ f(x) sin% dx

o

—— ———. . .
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On equating the coefficients of the corresponding term~ in the right-
hand sides of equations (11) and (12), there is obtained a set of an
infinite number of simultaneous equations:

(m=l, 2, 3X. . .) (13)

To simplify the expressions, introduce the following notations:

(14)

Then equations (13) become

(m=l, 2, 3, . . .) (15)

Here ~ and ~ represent the rise of the srch, being half the ratio

of the amplitude of the mth hsrmonic in the initial and the deflected
. curve to the radius of gyration of the beam cross section; Risa

&Lmensionless quantiw specifying the lateral loading; and S is the
ratio of the initial axial compression to the Ner column buckling load
of the beam. Now f(x), l-n,and S me known in the problem; it
remains to find the relation between R and ~, from which the corre-
spondence between the load and deflection can be traced and the stability
of the beam determined.

.

Sometimes the Fourier series of the moment curve converges much
faster than that of the loading itself. In such cases it is advantageous
to use equations (4) ati (5) directly instead of equation (6). Let the

r static bending moment of the lateral loading alone be written as ~:

._—.._——.—
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c

where ~isa

M.

characteristic

sions of force per unit length
a Fourier series, so that

= ~L2F(x) (16) ,

lateral pressure with the plqwical dimen-

of the beam. Let F(x) be expanded into

where

rz

(17)

,A

.,

,:

.’

Following the same reasoning as before, one srrives at the equations:

(m= I-,2, 3, . . .) (18)

Both equations (15) and (18) will be used later. They are a system
of an infinite number of simultaneous equations for which a general
treatment is not known. Howeverj there sre many important cases where
the number of equations can be reduced into a finite number; then a
complete discussion is possible. Several examples will be given below.

Equations (4) and (5) may be written as

ii -—
d%. Me(x) Ho

~2 +&Y–ti2 +—
EI +fiYo

= G(x)

.

.,

●

,\

L

1’,’

. — —
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where G(x) is a known function. The general solution is

Y =C1cosvx+C2sinvx+*
r

G(t) sin v(x - t) dt (20)

where

FH‘= EI

The constants Cl and C2 must be determined
conditions at the ends y = O for x = O and
can then be substituted into equation (8) and
a relation between v and the external load.
based their calculations on this relationship.

according to the boundary

L. The solution y(x)
v computed. This gives
Biezeno and l?riedrichs
Marguerre, on the other

hand, used the energy principle and the methods of Ritz and Galerkin to
obtain approximate solutions. The method of the present pa er, based
on the Fourier analysis, is due to the work of Y. S. Huang.5 Recently,
the same method was usedby Hoff and Bruce (reference 6).

It is clear from equation (20) that the deflection and the critical.
loadsre continuous functional of ye(x) and ~(x). Hence infini-
tesimal changes in ye(x) and ~(x) would always cause an infini-
tesimal change in the critical load.

SINUSOIDAL ARCH UNDER

Consider the simplest case of a
a sinusoidal load distribution:

Yo = alL

SINUSOIDAL LOADING

low sinusoidal arch subjected to

n-xsin —
L 1(O < al << 1)

‘Professor of Aeronautics, Central Universiw, FJanking,China.

— ——— ——.—-. .—— — --- -—
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D,

The general equations of equilibrium (15) then become, in this
particular case,

(x

w

B1 P
~2B 2

n
)

-j3X12+ l-S =-R+” Xl(l -S)
n=l

(x ,

w

B2 P
n2B 2 I

n
)

_f3x12 +4-s =0
n=l

1

. . . . . . . . . . . . . ..-. O .

. . . .

(22)

. . . . . . .0 ...0 ● ***.. ● *... J
This set of equations must be solved for ~. In order to get a

qualitative investigation into the nature of the solution, first consider
the simplest case of an arch rigidly hinged at both ends, so that a = co
or @ = 1, and with zero initial axiql thrust S =Ho = O. The mOre

,,,.

general case will be considered later.
,:

i

An obvious set of solutions of equations (22) is
.

?,

}

(23)

If the relation between B1 and R Is plotted, the curves in
figure 4 are obtained. Depending upon the values of Xl, there are

several possibilities: (1) If Xl ~1, the curves have monotonic slope;

consequently, they determfne the load-deflection curve uniquely. There
is no question of instabili~. (2) If L1 >1, then there we two real

extremes and, for values of R in between these extremes, every loading
may have three possible positions of eq~ilibrim. Following, for example,
curve IV in figure 4, the deformation of the beam can be traced as follows:
When the lateral loading
the deflection gradually

is gradually increased from the starting point a, “ ,,
increases according to curve IV (the rise of the r :\

c-
{,
II

.

——. . ———
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,

arch decreases). When the point M is reached, any further increase
of loading will make the beam jump to the configuration corresponding
to the point N and then follow the right-hand branch of the curve.
In between M and N, any increase in deformation needs no addition
of loading and therefore is unstable. Hence M is the critical point,
with the critical condition given by

From equations

be obtained:

(24)

dR_o
fml

d2R < ~

?
1

(23) and (24), the critical values of B1’ and R can

(B,)cr = ~~

Ra = .,+ {-

/“

(25)

If Xl< 1, Rcr is imaginary; hence no instability will occur.

This checks with the former discussion based on the uniqueness of the
load-deflection curve.

The above
tions (22) can

different from

solution, equations (23), however, is not unique. Equa-
allow a solution with one ~, in addition to Bl, to be

zero.4 In this case

Bl(B12 )(+ n2Bn2 - 1.12- l)B1 = Xl -R

\

(26)

B12 + n2Bn2 . X12 - n2
J

%hese two cases exhaust the possibilities, as can be seen by writing
down the rest of the set of equations (22), which gave the result that all
other B’s must vanish.

.-. ..— — .. —.——.
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have the solution

Equations (27)
definite range

NACA TN 2840

R-xl

%= 2-1
n

2

()

R -112
n2Bn2 = Xl - n2 -

n2-1

~

indicate that ~ can exist (with real value) only in a
of R. The deformation history of a beam sub,lectedto

(27)

gradualJy in&easing lateral loading can now ~e traced as in-figure ~:
Along ab, ~ = O, the curve is that of equations (23). Along bc,

Bn # O, the deflection curve becomes

y = blL sin nnx~ + bnL sin —
L

(28)

If the point b is real and lower than M, then it is the critical
point where the beam will have a tendency to buckle. The point b is
given by

%=ii-’ ‘
Bn=O

R=

Equations (29) will yield
conditions are satisfied:

(1) R, Bl, and Bn

(2) The R given by
equations (25)

)- (29)

J
the lowest critical value if the following

are real.

equations (29) is less than the R given by

(3) ~ B1 given by equations (29) must be greater than that

givenby equations (25); otherwise, the beam will buckle in
the first mode, at point M

I

t

-. !

,A

,

.,

1’
.
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(4) The particular nuuiber n is so chosen that the corresponding
Rm is a minimum

Conditions (l), (2), and (3) are satisfied if

Condition (4) is
for the &itical

and only if

(30)

satisfied only if n = 2. Hence the complete expression
loading is obtained:

The relation between the critical loading and
illustrated in figure 6. The solid lines are
tions. The dashed lines are either imaginary
load.

It is interesting to note here that for

1(lsyqm)

(31)

the beam-rise ratio is
the actual critical condi-
or not the lowest critical

—
buckling mode of a,low sinusoidal arch is symmetrical hut for xl>~

the buckling mode imitates that of a high arch, for which the deforma-
tion is essentially inextensional. As illustrated in figure 7, the arch
deflects (flattens) at first under the increasing lateral loading from
the initial position I to the state II, when the second mode 132 starts

entering into the picture. The mode of the beam during buckling, when
it jumps from the upper to the lower side, is a curve like III in
figure 7.

EFFECT OF INITIAL AXIAL COMPRESSION

Still restricting this discussion to the simple case of a sinusoidal
arch under a sinusoidal loading and with fixed hinged su~orts at both
ends, let an initial compressive force ~ act on the beam, so that

HOL2
s==

——— ——.
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is different from zero, S being the ratio of the initial axial compres-
sion to the Euler column buckling load of the beam. The equation of
equilibrium is given by equations (22) with $ = 1. The solution of
this set of equations is again either

Bl+% B2=B3=. ..=0

or

B1+O, Bn+O, all the other ~’s vanish

One is led to the following conclusions:

Rcr = (1 - S)L~ +
v I (32)

and for Ll > J’,

Rcr = (1 - s)l.~+ 3& + s -4

The effect of the initial axial compression is included in this formula.
As expected, the increase of the initial axial compression will decrease
the critical load, as can be easily verified by the fact that

~Rcr
—<o

as
(33)

for the full range of S, O ~S =1 (S cannot exceed 1). Furthermore,
the lower limit for instability is now

For Xl smaller than this value, the bar is stable; no buckling is pos-
sible. This lower limit decreases with increasing S until S . 1, when
the beam will fail as a simple Ner column, Rcr becoming zero.

I

I

I

D

“

,,

,,*
.,
,:

—— .—
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The values of the critical load Rw as a function Of Al, with

values of S as perimeters, sre given in figure 6 and table I. A
clearer presentation of the effect of S is a curve of the change in
the critical load ARw S against xl, where

()

(35)

This is given in figure 8.

From equations (32), it is seen that when Al is lsrge, say, with

magnitude of the order of 2.5 or larger,
()~cr s is almost linearly

proportional to S. As a crude approximation, one may take

(mcr)s = s

INITIAL SHAPE OFARCH

In order to find the effect of

()Rcr S4

4
(36)

OTHER THAN SINUSOIDAL

the irregularities in the initial
shape of the arch on the buc~ing load, sore-simple cases of low arches
whose center lines are nonsinusoidal.will be considered. By comparing
such solutions with the previous one, the significance of such varia-
tions in form can be estitnated. Let the initial shape of the center
line of the archbe given by the equation:

(37)

(A few examples sre shown in fig. 9.) Assume again for simplici~ that
the lateral loading q is sinusoidal, givenby equation (20), and that
the ends of the arch are hinged and without initial thrust, so that
Ho=~~~~~ The fundamental equations (-come

:, ,

I

I_ . -—-—.-.—.-. ——
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.

B1
(1

2n2Bn2 - ~ - m2~2 + 1
)
= -R”+ Al

n

%(xn2Bn2 - J.12- m2~2 + k2
)

=0

n
(for all k ~ 1, m

(38)

Again two possibilities exist: (1) A solution consists of B1 # O and

~ # O, but with all other B’s vanishing; (2) a solution Wi–tione Bk,

other than B1 and ~, different from zero. They must be discussed

separately.

In the first case, ~ and R maybe regardedas functions of B1

and the second of equations (38) differentiated to determine ~dB1.

Ihmthe sign of dBm/dBI it canbe observed that, when the load R is

gradually increasing, the amplitude of ~ ~i.e.j ]~1) will increase

irrespective of the initial sign of ~. Furthermore, by differentiating

the first of equations (38) to obtain dR/dBl, it canbe observed that,

in the prebuc~ing stage, the amplitude B1 will decrease when the

load R increases. Hence the critical condition is given by

m..
dBl

(39)

Carrying out the differentiation and reducing, the equation governing
~ at the critical condition is obtained:

where

c=-

~4+c~+d=0

2)b12 + 2m2~2 - 3m2 + 1
km

2(m2 - 1)

(40)

d=-
3m2~2

2(# - 1)

1 ~

— -. — — — ,
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Equation (40) can have at most two real roots. If
roots me different, then the one nearer to ~ is the

value provided that the corresponding (Bl)cr and Rcr

19

the two real
true critical

are also real.

If equation (40) has no real root, then-there is no critical ”loadand
the beam is stable.

With the critical value of ~ so determined, the critical values

of B1 and R can be obtained from equations (38) as follows:

(41)

Rcr = Al + (%” - l)(BI)cr -m2 *(Bl)cr

J

load is independent of
sign of & changes

But since (%)cr/b
equations (41) is not

It is interesting t~ note here that the critical.
the sign of ~. This is so because a change in
the sign of the roots (%ll)cr of eqwtion (40).
does not change sign,

()
B1 from the first of

affected by the change in s~~ of ~. Hence the conclusion follows

from the second of equations (41). This is rather unexpected. It shows
that under sinusoidal loading the two apparently different curved beams
in figures g(b) and 9(c) have exactly the same critical load.

Equation (~) can be solved graphically or numerically. The results
of such calculations for the cases m = 2 and 3 are given in figures 10(a)
and 10(b). The magnification of the amplitude of the higher harmonic,
initially at ~ into (~)cr at the critical point, is clearly seen

from figure 10. The reduction of the critical load due to the presence
of ~ will be discussed later when the second possible solution is

obtained. The parameter used in the curves of figure 10 is not ~

but the deviation ratio:

(42)

This ratio indicates the deviation from a sinusoidal form better than
the parameter ~ itself.

1’
— ———— ..—. —



—— -.. . —

20

.

NACA TN 2840
I
1,
1’

u,

It remains to discuss the second possible
one nonvanishing” ~ (k # 1, m). In this case
tions (38) is

solution which includes
the solution of equa-

- k2%c2=X12+ m2~2 - k2

J
The relation between Bk and R is

nature to that for a.sinusoidal arch
Instant when Bk will appear is the
tion Bk = O leads to

again an ellipse of a similsr

under sinusoidal loading. The
critical point. Hence the condi-

This will lead to a fundamental critical value if the four conditions
.

enumerated under equations (29) are satisfied. Whether equations (41)
or equation (44) gives the critical load depends on the initial shape
of the beam. ,,*

If m= 2, equation (.44)always gives a higher Rcr than equa-
tions (41). Hence the critical load is determinedly equations (41).

:

NO B3, B4, and so forth can appesr during buckling.

If m ~ 3, equation (44) with k = 2 gives the lowest Rm

provided that L1 is greater than a certain constant, say
()

,,
Al o. For

il less than
()xl OY equations (41) give the lowest Rcr. The point

()Al o is the point of tangency of the curves of Ru against Xl

computed according to equations (41) and (44), respectively. ! ,

Again it is evident from equation (44) that the critical load is
independent of the sign of Xm. ,-

,,

— —_—-—._ .—. .—c ..—— — — ..=——..
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The combined results of equations (41) and (~) are shown in
figure 11, and the numerical results are given in tables II and III.
In table 11, (%)a and Ru computed according to equations (@)

and (41) sre listed. Comparing tables II and 111, it is seen that in
certain ranges of Xl, equations (41) give the lower Rcr, while in

another range equation (~) gives the lower RU. Furthermore, at

smaller values of Xl, even if xl> l) (Bl)cr and Rcr may become
imaginary, as shown in table II. The physical meaning of this is that
the process is then a continuous one. There is no sudden change of
configurations. The beam, under bending, simply yields continuously to
the increasing external load.

These examples illustrate the serio~- nature of the effect of
the & te~. When the loading is symmetrical, a very slight com-

ponent.of unsymmetry in the curved beam lowers the critical load con-
siderably. For exsmple, in case of a sinusoidal loading “actingon a
sinusoidal.beam, an unsymmetrical second harmonic in the initial curve
with an smplitude ratio of 1 percent in the initial form lowers the

critical load by approximately 10 percent. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical ‘
modes.

On the other hand, for a symmetric loading, the effect of higher
harmonics that are symmetrical is much less pronounced. A similar
effect should be expected when the beam is sinusoidal but the lateral
loading deviate6 from a sinusoidal distribution.

An important special arch form is a circular arc with a radius Po.
Within the present approximation, there may be written -

4L2Yo=&x(L-x)=—
1

n=
3

~ sin —
n3 L

(45)
o

? ‘0 n=l,3j5j***

This corresponds to an arch rise of L218P0 at the center. The coef-

ficients ~ form a r’apidlydecreasing sequence. In fact,

a2=0

1
a3=Wa~

.a2n=o

—---- . . . --- — _.-— —— ——.
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The effect of the higher harmonics is negligible. If as, ~, and so
forth sre neglected, then the
arch can be found from figure

Ra (Sinusoidalloading) of a circular
n(b) or table III (m = 3) by taking

The difference in Rm is readily seen to be small.

. To illustrate the fact that a5, a7, and so forth may be neglected

without causing appreciable error, the case of the unsymmetrical buckling
mode will be considered. Equation6 (43) should be modified, when k = 2,
into

-x n2B 2 .
n E

n2Xn2 - 4
n n

Al

%=
m(m2 - 4)

Now

I 11%# = Al E 1

n=l,3,5,... n=l,3,5,...
~ = (1 + GJX12

z E xf’ Xp
m2~2 =

(# - 4)2
==(1 +62)

m=3,5,7,... m=3,5,7,...

where

Cl ~ 0.01436

G2 g 0.07325

I
Ie

1:
.—
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The critical load is given by the equation:

23

()R-X123+
Neglecting the effect of

X12
(1 +e2)== (1 + GJA12 - 4

~, X7, and so forth on Rcr is to neglect

the effect of el and e2 on the root R of this equation. It iS

clearly justifiable.

UNIFORMLY DISTRIBUTED PRESSURE

In this section the critical load of a sinusoidal arch under
uniformly distributed pressure will be discussed. From the results of
the preceding sections, it is expected that the deflected curve of the
arch would not remain sinusoidal and that an unsymmetrical component
would in general enter into the buckling mode. For simplicim, again
consider a simple sinusoidal arch, with ends hinged and without initial
end thrust, so that f3= 1, += X3=... =0, andS=O. The

lateral pressure is denoted by ~ per unit length of the span. Hence

the
out

bending moment in the beam, die to the lateral forces alone, with-
counting the contribution of the axial thrust, is

MO=l ~ %x(L - X)

4L2 z nYrx
‘%x ~ sin —

n3 L
n=l,3,5,...

(46)

It is convenient here to use equations (18) because the Fourier series
of M. converges much faster than that of the lateral loading itself.

From equations (18), there can be obtained

( )
~~n2Bn2-A12+m2 .--$ R + b~l

1

(m=l,3,5, ...)
n

Bm(1 )
n2Bn2 - h12 + ~2 . () (m = 2,4, 6,...)

n (47)

where bh = lif m=l; bh = O if m+l.

..— .—— -—.——-—
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It is evident that when the load is applied, R ~ O, all the B’s
with an odd subscript would in general differ from zero. It is slso
clear from the second of equations (47) that only one of the B’s with

an even subscript can differ from zero, because

equal to two different values of X12 -m2. As

would be separately treated.

‘T n2B 2
n cannot be

before, these two cases

Consider first the simpler case in which one of the B’s with an
even subscript is different from zero. In this case the deflection
curve of the beam is unsymmetrical. Let the nonvanishing B be ~k,

where k is an integer. From the second of equations (47), then

zn2Bn2 = X12 - 4k2 (48)

Hence from the first of equations (47),

(m=l, 3, 5, . . .) (49)

Sqwing Bm, multiplying by m2, and sunming, there is obtained

“zn2B 2 .

n

()

n (l:4k#’-1R2+

16R2

7 z
m=3,5?...

(50)

Equating this to Ala - 4k2 according to equation (~), an equation is

obtained relating ~k with R. This relation is an ellipse, as in the
section “SinusoidalArch under Sinusoidal Loading.” The critical condi-
tion is reached when

+%=0

— .—— —-. ————— —.-— ——-.. — -. .,!
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which implies that

254D

,,

,, ~k=() (Z)

With condition (51), the critical load Rcr is given by the following

,. equation derived from equations. and (n):

.)

,,

~ ~2

# z
m=l,3,5,...

The series in the coefficient of R2 converges very fast. If all terms
except the first one are neglected, the error is less than 1/2 percent.
Hence equation (52) is ‘essentiallyequivalent to

(53)

Comparing this equation with equations (29) for the case of a sinusoidal
arch under sinusoidal loading, it can be seen that they are almost

identical except that R in equations (29) is replaced by 4
;R and n

is written here as 2k. One of the roots of equation (53) which would
represent the critical load on the beam must satisfy the four conditions
stated below equations (29). In a manner completely analogous to the
treatment of sinusoidal loading under equations (29), one concludes that
k must be equal to 1 and that the solution exists only when xl is

equal to or greater than fi5. The critical load is then

(w=) (54)

()where R
Cr sine

means the critical R of a sinusoidally distributed

lateral pressure.

If the full series in the coefficient of R2 in equation (52) were
taken, then, since k = 1, and

E >4.977 x 10-4

m=3y5j7,... m4(m: ).42

— _—..—.
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equation (54) is modified by a factor of appro~tely (1 - O.00~),

Rcr ()
~R& 0.995 4 cr Sine

under sinusoiti loading that this
critical buckling load only if Al

Turning now to the other possible solution, that all the B’s
with an even subscript vanish, one sees by analo~
sinusoidal arch
would lead to a
Let

L $%12=c
n=l,3j5,...

Then equations (47) give

From equations (57) compute m2~2 and sum:

c= E m2~2
m

(m =

to the case of a

or

(55)

mode of deformation
is sufficiently small.

(56)

1, 3, 5, ● . .) (57)

16 R2

L

1=—
2 m4C-

(
X12+m22-

m=l,3,5,...

(58)

This gives a relation between C and R but is rat@ useless because
of its complexity. A more practical solution can be obtained by suc-
cessive approximation. According to equations (57), for a given R,
~ decreases rapidly with increasing m. As a first approximation,
then, neglect the effect of B3, B5, . . . and obtain from equa-

tions (47), m = 1, the equation of equilibrium:

, .4.

I



.,

NACATN2840

which is again almost
sinusoidal arch under

27

identical with equations (22) for the case of a
sinusoidal loading, except that R in equa-

tions (22) is now replaced by
4
~ R. Hence analogously,

.7

For the second approximation, neglect the effect of ~,

so forth, but consider B3. Now equations (47) may be written

B1
(1

)

~~z”- ~lz+g =
n

n

(1
)

n%n2 - X12 + 9 .
‘3 n

Hence at the buclil.ingpoint,

4R-—
27fi

‘ (59)

~, and

as

1(60)

(18k12 - 234)(%)cr

Substituting into equations
combining B1 and R, and using

there is obtained

.

(60), which now become a relation
the criterion dR/dBl = O for buckling,

1 . . ..— —— . ——
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(Bk =[;612- ‘ - k)

where

k
‘$

Since k is always positive, the critical load Rm

NACA TN 2840

(q <
(61)

.

i ,’

(62)

given by equa- .

tions (61) is always smaller than the first approximation given by
equations (59). But the difference is really very small because
k <<1. Values of k are given as a function of Al in table IV.

Since (%) ~ decreases very fast with increasing m, the con-

vergence of the successive approximation is very good. From a com-
parison of equations (62) and (59), there appears no need for further
approximations.

It can be concluded that, with an error less than 1/2 percent, the
critical value of R for a uniformly distributed loading is equal
to fi/4 times that of a sinusoidal loading.

Interpreting the result somewhat differently, compsre the total
load that an arch can csrry when the load is distributed ftrst uniformly
and then sinusoidally. Let W be the total load. Then,since

and

and since Ra is based on ~,

(63)

..— — ——. —
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Expressed in words, if W is the total lateral load an arch can
sustain without buckling when the load is distributed uniformly over the

span, then the same arch can sustainonly a total load of — W if that
:

load is distributed sinusoidally. Thus concentrating a load toward the
center of the arch lowers the critical buckling load.

CENTRALCONCENTMEDLOADONA SINUSOIDAL ARCE

The case of a concentrated load acting at the midpoint of the span
can be analyzed in the same manner as for the case in the preceding
section. Only a very brief explanation will be given below.

Assume again that the arch is initially sinusoidal, ri&ily hinged
at both ends and without initial end thrust, so that ~ = 1,
~=k3 =... =0, and S=O. The lateral load is written as

‘=%L

The bending moment due to the lateral forces alone is

(~ Wx for (05X5; ) m-1

(64)

I
— \—.%= pm=_ , 2- (-l)T + sin ~

fi2

:W(L - X)
(
L<x~Lf?r * _

)
“m=l,3j5,...

The equations of equilibrium are

~R+8&l
m2

(m=l,2,3, ...)

(65)

(66)

For the unsymmetric’mode of ’buckling,if this mode is possible, the
lowest Rcr occurs when I& # O, which implies that

.

I .— ———
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and the critical load is given by the smallest positive root Of the
equation:

u

E 4A1 8 ~
4R2 1 R -gh +4=0

m2(m2 - 4)2 -T
m=l,3,5,... ,.,.

Letting

I 1 _l+G

~2(m2 - 4)2 9
m=l,3,5,...

approximately 0.04Q9,where 6 is

(67)

or

‘cr = ~(RCr)sine

The numericsl results of equation (67) which sre used in the testing

progsm sre tabulated in table V and

ure I-2. For the symmetricalmode of
in the preceding section lead to

compared with ~(RH)sine

buckling, S&pS analogous

1

in fig-

to those

@l’m) (68)

where

k’ = 9k

k being the constant givenby equation (62)and table IV.

.— ..— — —_—.
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Hence Ra for a concentrated load is approximately equal to one-

of Ru for a sinusoidally distributed load.

As in
a low arch

These

the preceding section compare the load carrying capacity of
with respect to vsrious distributions of the loading. Thus

()wW cone . 8

-=--z’;=:
J

(69)

ratios sre within 2 percent of the ,correspondingratios of
the total loads causing equal center deflections of a simply supported
besm under the three load distribution~. This indicates that, for any
symmetrical load distribution, the buckling load Wcr is proportional-
to the total load (of the specified distribution) which causes unit

center deflection of a.straight simply supported beam.5

CENTRAL CONCENTRATED LOAD ON ANONSINUSOIDAL ARCH

Because the experiments to be described were carried out on a
series of approximately sinusoidal arches with a central concentrated
load, a more complete investigation of this case will be made. First
the case Al # O and k3 # O will be studied and the difference in

the influence of L3 on Rcr for sinusoidal load and Rcr for a

central load will be shown. Then the case in which Xl # O, ~ # O,

and X3 ~ O will be investigated. The results of the secon”dcase are

more complicated and are used principally to show when the simple super-
position of the ef~ects of @ and A3 is not possible.

‘This result was previously shown by Timoshenko (reference 1) for
the case of symmetrical buckling mode.

—
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.

For a pin-ended arch without initial thrust (p = 1, S = O), the
eq@ion of equilibrium for a concentrated center load is

% [~n2[&2 - %2) -m!= ~ sin *N m2~
n

(.=1, 2, 3, . . .) (70)

If only Al ~ O and A3 + O, equations (70) become

(B1 L12 + 9X32 - I
n2Bn2

)
-J.m- ?bl

n

( )B2h2+9b2-b2Bn2-4 ‘0
n

(71)

,.,.

.

For the case of buckling in the unsymmetric second mode one can

solve for
E

n2B 2
n from the second of eqmtions (71). Substituting

n
this into the other two of equations (~), solving the resulting equa-

tions for B1 and B3, and again forming the sum L
n2B 2

n an equa-
n

tion is obtained connecting R, X1, X3, and B2. At the critical

condition ~ vanishes. Thus one arrives at an equation governing the
critical load:

.Q2

I

1

(

36

)

4X1+=X3 8 2+ @x32+4=0+R-—
n2(n2 - 4)2 9

‘3% 25
n=l,3,5,...

-1

11’

.— —— .— .- —..—— .-
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Letting

L 1 k

&(n2 _ 4)2 = ~
n=l,3,5,... ,

k ~ 1.0409

there is obtained

L

It is interesting
case, the sign of X3

/( )(81 2
‘1 -@3 + hk 2X12 -gh32- 9)] ( )72

to
is

()* Rcr sine unless 81~ A3 << Al. In fact, the effect of X3 on the

note that in contrast with the sinusoidal load

()
important, and R= COnc no longer approaches

ratio
(Rcrjconcl(R{jsine can beappreciabl’”

The $% terms in equation (72) arise from the cross product in

the squaring of the right-hand side of the last equation of eqyations (71)

to obtain B32. If the case is considered in which only Al and ~

are different from zero, there is no corresponding cross product and
therefore it can be expected that ~ will have the same proportional

effect on R- for a centrally loaded arch as for a sinusoidally loaded

arch. P~sically this difference in the effect of ~ and X3 seems

reasonable since the central load occurs at the maximum amplitude of
the ‘X3 wave, but at a node of the ~ wave.

For the case in which Al, ~, and
‘3

differ from zero it is

known from the section “Initial Shape of Arch Other Than Sinusoidal”
that buckling always occurs in the second mode and that the influence
of the higher modes is small. Therefore all ~’s with m >3 will
be neglected. Letting P = 1 and S = O, the equations of equilibrium
axe

.

— ...—
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.

( )%t.’h%2- 4%2-9#-4=-4k
“1

(73a)

(73b)

(
3

B3 ~ n2%2 - %2 - 4B22 - 9B32
)

-9=-; R-9~ (73C)

These equations are to be solved for the critical values of Bl,

B2, B3, and R under th critical condition aR/aBl = O. The solution

can be effected in the following steps:

(1) Eliminate R between equations (73a) and (73c) and use
equation (73b)”to obtain an equation connecting B1 and ~:

[3.4;y+ 9(5

(2) Differentiate equations (73a) and (73b) with respect to B1

and use the critical condition ~/aB1 = O and equation (73b) to obtain

&@Bl and aB3/aBl at the critical point. The results are expressed
in terms of Bl, ~, and

‘3“

(3) These expressions for ~a%/aBl)cr and (aB3jaBl)cr ‘e
substituted into equation (73a) after differentiating it with respect
to B1. Using the critical condition aR/aBl = O and eliminating B3

through equation (73b), an equation for B1 ~ in terms of (B2)u
()

is obtained:

,.

,A

*,

r

.

— .— —— I
(
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.

‘B1’c:=+-4(’klFk+~(B2~2-3+2n “2%2’75)‘1

By plotting equations (74) and (75) a compatible solution can be found.
This solution wilJ not hold for ~ = O, butit is valid fcm k3 = o,

although no simplificationwill result. The results for a series of
arCheS with ~/kl = 0.005 a.d L3/A1 = 0.04, which are representative

of the test specimens to be described in the experimental section, are
tabulated in table VI and plotted in figure I-2. Comparing this with
figure 11 it is seen that the combined influence of ~ and 1.3 is
stronger than the sum of their separate influences for lower values of Al;

but for higher values of il(i.12> 5.5) the principle of superposition “

can be used. This is not unexpected since for low values of xl the

presence of X2 causes the mode of buckling to change from symmetrical
to unsymmetrical and thus changes the influence of A3 on Rcr.

In figure 13 the process of loading is pictured for two examples in
the above sequence of arches, one below the dividing value of Al = 55

and one above. The changes in amplitudes of the three modes

B2-~,andB 3-X3

L1 - ‘1,

are plotted as functions of the load R for

h1=2and X1=4. It isto be noted that, for the lower value of

L19 ~ does not increase rapidly until just before buckling occurs,

while, for L1 = 4, B2 starts increasing rapidly at a point appreciably

before the buckling point. For both cases B3 increases al an almost

constant rate until just at the point of buckling.

ELASTIC SUPPORTS AT EiDS

So far the ends of the arch have been considered as rigidly hinged.
Since ideal rigid hinges cannot be realized i; the testing machine, it
is expected that some deviation in the experimental buckling load from
the theoretical value may exist owing to the yi’eldingof the supports.
In order to obtain some quantitativemeasure of the effect of support
displacement, an example of an arch with elastic supports
considered.

Assume that the supports are perfectly elastic: Let
spring constant of the support so that a displacement A
a thrust of magnitude aA. Without loss of generali~ it

will be

a be the
would produce
can be assumed

that one end is rigidly hinged, and the other is elastically supported,
as shown in figure 3. The effect of the support rigidity on the

—— .——- ——..—..—
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.
equilibrium is expressed by the parameter ~, defined by equation (10).
The equations of equilibrium are either equations (15) or (18). I

As an example, consider a sinusoidal arch loaded laterally by a
sinusoidally distributed load of intensi~ q per unit length:

Y. = alL sin+

q=~sin

The equation of equilibrium is givenby
obtainable in the same manner as in the
Sinusoidal Loading” is

where
()~1 o is the smallest positive real

(PA12- 4 + s) = &($%2

Icx

-r

equations (22). The solution
section “Sinusoidal Arch under

(L<X15(AJ0
6 )

(b> (h)o)1
root of the equation:

-1+s
)

3

(76)

-,

Y

(77)

The effect of the nonrigidity of the support (~ <1) is shown in fig-
ure 14 and table VII. The values of

()Al o as a function of @ are

also given in that figure and table. !l!helimiting case, a-. and
~~1, checks with the results of the sections “Sinusoidal Arch under
Sinusoidal Loading” and ‘Effect of Initial Axial Compression.”

If the support offers no resistance to the axial thrust, that is,
it is perfectly flexible, then a = O and 13= O. In this case there
is no critical buckling load; the arch deflects continuouslybecause the

lower limit of Ll, I/@, below which no buckling can occur, now tends
to infinity.

.

—- .. —— ..— - -— ———
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Similarly other loading conditions may be treated. For example,
if P differs from 1, the ratios of Ra for a unifornilydistributed

load, a sinusoidally distributed load, and a concentrated load at the
center are again, respectively, fi/4,1, and 1/2.

LATERAL ELASTIC SUPPORTS

In application to certain wing design problans, it is desired to
investigate the effect of lateral elastic supports on the buckling load
of the arch. As an example, consider an arch having an elastic support
at the center, as shown in figure 3. Let a’ be the ~pring constant
of the support. Then the change in thrust in the spring is

()where A’ - A’ o is the change in the deflection at

generali~ is lost by assuming (A’). to be zero, if

the spring is counted as a lateral force.

(78)

the midspan. No

initial thrust in

Now when the deflection curve of the arch is givenby equations (2)
and (3),

()A’-A’o=
I

(-l)m~(am - ~)L (79)

m=l,3,5,...

The moment contributedby V is then (cf. equation (65))

—

‘4
m-l

(%) v=
-— (-1)= -$ sin ~

~2
m=l,3, ,...

(80)

Combining equations (78), (79), and

hand side of equation (4), there is
equations of equilibria (equations

(8o) and adding

obtained, after
(18) modified):

()Mo v to the right-

some reduction, the

...

.

— ——
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.

1+p%,- Iipf+m, -s =-n2K#t+)&t12)
.

‘i- n-l

u n=l,~,...

where Km is given by equation (17) and

Since a simply supported bemn with a unit concentrated

under the load,

approximately the ratio of a’ to the spring constant of a
ported besm hating the linear dimensions of the arch.

-s)+

(82)

load at its

v is

simply sup-

$“=1

S=o

~=o

K+_
3-7

Km=O

(81)

Consider a sinusoidal arch subject to sinusoidal loading. For
simplicity let the initisl thrust be zero and let the end hinges be
rigid. Then if m,+ 1,

— —

,:

.

.

1;
I ‘

j-:
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The governing equations sre

Q=~l- 1 (J) ’21%
n=l,3,...

(if m is odd)

(83)

(if m is even)

P= E n2~2
n=l,3,...

then

q - R + 2vQ
B1 =

P+l - -&2
L

39

With these values for ~, there is obtained
.

(84)

2flQ

(
m2P2+m2- A12)

(m oddanda3)

(85)

. ..——.. .. . .. _____ —.— —— -——— .—. ._
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First calculate the critical load for unsymmetric buckling where

%X-I+ O for some n. Then according to equations (83),

But P is also given by

—

P=

=

the

The

and

L m2~2
m

4P2Q2
E

m=l,3,...

1

m2 m2_( 4n2)2

(86)

).1 - R)(L1 - R + 4vQ)
+

(1- 4n2)2
+ 4n21&2

(87)

Neglect allexcept the m = 1 term of the series and substitute
value of P from equation (86):

(88)
.

critical condition is again B2n= O. Solving equation (85) for Q .
substituting together with ~n = O into equation (88), one obtains

5-P 1(4n2 - 1)(1+ 2w) + 2V

where

a.

m.1 F “*
J 9“””

——— —– —. .C -— — .– ..- - -. .— —..
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This expression is a minimum for n = 1, hence

.

a ~ -0.3087

,

,

.

41

1 (89)

Rcr ()
= Rm

sine +3+%7.~,-&)si.J J

These values are given in table
P = O, 0.5, 1, 1.5, 2, and 3.

VIII and plotted in figure 15 for

In this solution’the effect of the higher modes (m> 3) on the

force exerted by the spring, which enters by the series
z

1
m m2(m2 - 4)’

is included, but the effect of the higher modes in lowering the buckling

load, which enters by the faster converging series

z

1 , is
m2(m2 . 4)2

neglected. In the analogous case of the arch with a concentrated central
load this result% in a maxtium error of 3 percent for x~<lo and for
this case it should be no more.

Consider next the case of symmetricalbuckling which occurs for the
smaller values of Al. As a first approximation neglect the effects of
all the ~’s except B1. Then from equations (83), there is obtained
under the critical condition &@Bl = O the critical load:

Rcr = l.l(l+ 2v) +
{(
4~2-~- 211)

3/2 .-
-l (90)

A procedure similar to that used in the section “Initial Shape of
Arch Other ThandSinusoidal” can be applied to find further approxima-
tions. The results.of such a calculation,with the effects of ~ and

B3 included, are given in table VIII and are plotted in figure 15.

BUCKIZNG LOAD BASED ONKM AND TSIEN’S ENERGY CRITERION

It is well-known that the classical buckling criterion, on which
the calculations of the preceding sections are based, leads to erroneous

—---—— ..—— — — — ——.. ——
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results for cylindrical and spherical shell?;
different criterion, first proposed by K&man

while a fundamentally
.,

and Tsien, whose latest
I

version is given in reference 7, gives much closer agreement with exper-
iments. The criterion of K&m& and !l!sien(henceforthreferred to as
ener~ criterion) is that the buckling load is reached when the total
ener~ in a possible (buckled) equilibrium state is equal to the total
energy in the unbuckled state. In other words, if the total potential
energy is such that it is permissible for the structure to jump from
the unbuckled state to a buckled state, then the structure will actually
jump.

Both the classical and the energy criteria have been applied to “
curved beams and shells. In some cases the classical criterion gives
closer agreement with experiments; in others, the energ criterion gives
better results. The reason, as pointed out by Tsien, is that in some
cases the energy “hump” between two equilibrium states (one buckled and
one unbuckled) of the s&ne ener~ level is large and in other cases it
is small. If the hump is small, the ever present small disturbances
will enable the structure to jump from the unbucliledstate to the more
stable buckled state. Otherwise, this Jump will be hindered. The
crucial decision of the proper criterion depends much on what one means
by a “practical” experimental setup or a “practical” service con~tion
of the structure.

The energy criterion has been applied to the low arch problem by
IYiedrichs (reference 5) who found a great reduction in R~ based on
the ener~ criterion from that based on the classical criterion. In
order to decide which criterion actually applies to the buckling of low
arches, the experimental setup to be described in the next section
will be accepted as practical and the theoretical results will.be com-
pared with experiments.

In applying the energy criterion, one must distinguish a constant
deflection loa@ing (a rigid testing machine) from a constant force (dead-
weight) load. In the former case the change in total ener~ in buckling
is just equal to the change in the internal strain ener~, while in the
latter case it is equal to the change in the strain ener~ minus the
force times the displacement. However, a laterally loaded arch cannot
buckle if the point of loading is not allowed to ,jump:hence only the
dead-weight loading case will-be considered. - ‘-

For dead-weight loading the total energy is

where U is the strain
loading. The energy @

fj=u.w

ener~ and W is
can be expressed

the work done
as a function

(91)

,

I

by the lateral
of the

.
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deflection 5. Then according to the ener~ criterion, buckling would
occur under a dead weight F provided that

1 (92)

where 51 and 82 are two deflection configurations. Now the strain

energy U, under the assumptions of the section “General Analysis,” is

given by

From equations (2), (3), and (9), equation (93) becomes

(93)

U=K
1{ [ 1 }m4 (h - %)2 1 +*( b+BJ2 +S(~2 -%2) (94)
m

where

The work done by the

$3K==
~3 .

external load in the buckling process is

=

r
q(Yo -y)dx (95)

o
w

For a sinusoidally distributed loading,

(w=2KRx1-
%) (96)

.———. .———
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while for a concentrated load at the midspan
..

W=4KR E (.1)+(%- ~)

m=l,3,5,...
(97)

The buckling load according to the energy criterion can then he obtained
easily.

Sinusoidally Distributed Loading on a Sinusoidal Arch

It was shown in the section “Sinusoidal Arch under Sinusoidal
Loading” that the only equilibrium position of a sinusoidal arch under
sinusoidally distributed load is the one for which all the ~’s
(m = 2, 3, . . .) vanish. Hence if S = O (zero initial thrust),

(98)

.,

The buckling conditions that @(Bl’) = @(Bl”) and R(~’) = R(B1”) are

fulfilled when R = Xl at winch

and @(Bl) = @(-Bl).

equations (98) gives

A substitution of R = Al into the second of

the arch rise at the critical condition:

(99)

.

Hence

or

(loo)

——— —— ———-— —-— -— ——— { ‘4
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Central Concentrated Load on a Sinusoidal Arch

Assuming no initial thrust (S =0), from equations (94) and (97)

$
K

.

[
Bl)2 1 +

FYom equations (66)

45

(101)

+

(102)

If all the ~’s except B1 are neglected, the above eqpations

become identical with those for the sinusoidal loading if R is replaced
by 2R. ‘I%USapproximately, Rcr for the concentrated center load is
one-half of that for the sinusoidal load. This is the same approximate
ratio as for Rcr of the sinusoidal and the concentrated loadings based
on the classical criterion.

The ratio of Rm based on the energy criterion to that based on
the classical criter;& is plotted in fi&e 16 for sinusoidal loadings
on a sinusoidal arch. This same ratio holds
central load on sinusoidal arches.

approximately for the

IIXPERIMENTS

A series of pin-ended arches having rigid simple supports were
loaded with a central concentrated load in the testing apparatus shown
in figures 17 and 18. The ideal end conditions were approximated as
closely as possible by supporting the arches on knife edges mounted in
a heavy steel frsme having a stiffness approximately 100 times that of
the specimen. Allowing a 20-percent reduction in this stiffness due to
the flexibility of the knife edges and fittings results in a value of ~
equal to 0.988. A reference to the section “Elastic Supports at Ends”
and figure 14 shows that a maximum error of about 1 percent will result
frcunconsidering the supports as perfectly rigid.

.—— .—.. —— — — .— —.— — . —
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The knife-edge fittings were
the ends of the specimen with the

The most critical problem in
was the spacing of the supports.

provided with
knife edges.

NACA TN 2840

sockets which alined
(See fig. 19.)

setting up the specimens for testing
A looseness or an initial compression

results in a change in the initial arch shape and an appreciable error
in the buckling load. In the tests the spacing adjustment was made by
a wedge controlled by a screw which was rotated until the play between
the specimen and the knife edges was just eliminated. o

The specimens were cut from 2@-T3 and 75s-T6 sheets and milled to
l/2-inch width. The strips were then rolled to the desired curvature
on a three-roll roller. To reduce the effect of roll eccentricity
several passes were made at each setting of the rolls, the rolls being
indexed to a new position at the start of each pass.

The curvature of each specimen was measured at 12 stations by a
dial gage which could be read up to ten-thousandths of an inch, placed
between knife edges 2 inches apart. These curvatures were numerically
integrated to find the shape of the specimen for which a 12-term Fourier
expansion (half-range sine series) was made. The first three coefficients
sre given in table IX. As a check on the accuracy of the method the
central rise of the arch as predicted by the numerical integration was
compared with the actual rise as measured with a vdrnier height gage.
The difference was no more than 4 percent of the arch rise for each
specimen measured. The central arch rise as predicted by the Fourier .

coefficients agreed with the numerical integration within 1 percent.

The Fourier coefficients Al, ~, and X3 were used in calculating

the theoretical critical load. In such calculations use is made of the
fact n~ted in the section “Central Concentrated Load on a Nonsinusoidal
Arch” that, whereas for smaller xl (say, Xl< 2.4) the joint effect

of ~ and ?L3 on Rc is not equal to the sum of the effects of ~

and X3 separately, for larger XI (SW, Al> 2.4) the effects of ~

and ~ aresuperposable. Hence for L1<2.4 themore exact method

of the aforementioned section was used, but for Xl > 2.4 the effects

of ~ and As were calculated separately and added together algebra-

ically. The effect of X3 is givenby equation (72). That of ~,

.’

, ,.

according to the previous argument, can be obtained, percentagewise,
from figure n(a) or table III.

Although no attempt was made to determine the arch shape during
the loading process, visual observation showed that the teat performance
at least approximately agreed with the theoretical predictions. The
gradual increase in the third mode with the load, resulting in a flat-
tening of the arch and then a reversal of curvature for the higher values

“
I
1’

1,
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d Xl,was noted.

unsymmetric second

47

For values of Al > 2.4 the rapid increase in the

mode just before buckling was quite evident. The
clearest-indicationof the onset of buckling, however, was obtained by
noticing the vibration of the specimen as the individual weights were
applied. Even a very careful application resulted in a slight vibration
in the fundamentalmode. When the load approached within a few pounds
of the critical load there was a rapid decrease in the frequency of this
vibration. Further load applications were made in extremely small
increments.

The theoretical,and experimental results are listed in table IX
and plotted in figure 16. In figure 16, the ordinate is the ratio of
R determined by the test to that computed theoretically accorting to

t% classical criterion. In the same figure, the dashed line shows the
ratio of Rcr given by the energy criterion to that given by the clas-
sical criterion. This curve is based on the simple sinusoidal arch
(~=1.3 =0). J?orarches usedin theexperiment ~ and h, were so

small that the variation of the ratio Rcr
() /( )R does not

ener~ ‘r class
vary much from the dashed curve of the figure.

It is seen that the test results agree quite well with results
based on the classical criterion for higher values of Al but drop
appreciably below them for the lower values. All the test vslues,
however> lie above the energy criterion curve. Although calctiations
far the series of arches representing the test specimens indicate that
buckling would occur for Xl ~ 1.0!5,no buckling was obsened for

hl~ 1.38.

A calculation of the stresses in the specimens at buckling was
made to determine if yielding occurred. With Ho= Oand P=lthe
axial compressive force is given by equation (9). Using the nondimen-
sional notation it becomes

(103)

For a sinusoidal arch with a sinusoidal load all the ~’s except

Bl are zero at the critical buckling load and
() (

2=A~2_
%u 31 1)

()
for 1 ~X12 ~~.~ and B1 cr2 = ~12 - 4 for X12 ~5050 Therefore
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I ‘

1’.

“[
& +2@ (for l~A12 <5.5)

()
OcmH.

‘T’
(104)

ap
4 (for A12Z 5.5)

where P = ~EI/L2 is the Euler buckling load of the beam and Up = P/A.

Thus it canbe seen that the critical compressive force is”just equal to
the E~er load if Xl = 1. AS xl increases the critical force increases

until it reaches the Euler load for buckling in the second mode. At
this point the arch buckles unsymmetrically and the critical compressive
stress remains constant for all higher values of Al. This performance

is also typical of symmetrical arches with a central concentrated load,
but for arches with a slight asynmetry, as iS the case for the sPecime~
tested, the value &- = 4 is approached only as Al becomes large.
The values of Hu/P for a series of arches are given in table VI.

The maxtium bending stress at a~ point x is given by

(105)
,,,.

where t is the thickness of the specimen.
sional Fourier coefficients this becomes

In terms of the nondimen-

~) sin% (106)

.,
.

The bending stresses at the midspan were calculated for the series of “
arches with ~ = 0.005A1 and As = 0.040L1which are representative

of the actual test specimens. The results are shown in table VI together
with the tOtd maximum stress for t = 0.25.The total stress for any
other thickness is obtained by multiplying the last column of table VI

by the factor 16t2.

All the specimens tested had maximum stresses well below the yield
stress of the material at the buckling point. Yielting occurred in the
post-buckling stage for all the specimens except those having the very
lowest values of Xl.

. - ‘1’

—— .— 1
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CONCLUSIONS

Fourier analysis has been used to solve the problem of buckling
arches under a lateral loading acting toward the center of

curvature. The conclusions may be summarized as follows:

1. For a sinusoidal arch under a sinusoidal loading, the analysis
gives a very simple exact solution for the nonlinear equation of equi-
librium. The critical load can be expressed as a simple function of
the besm dimension parameters. On the basis of the classical buckling
criterion, it is shown that the buckling mode is symmetrical for arches
having a nondimensionalparameter Xl less than ~ and is unsym-

metrical for xl greater than ~. This dividing value is affected

somewhat by the initial thrust in the arch and the elastici~ of the
support.

2. For arch shapes other than sinusoidal but under sinusoidal
loading, it is shown that symmetrical deviations have only minor effects
on the buckling load, while unsymmetrical modes of deviation cause
serious reduction of the buckling load. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical
modes. For sinusoidal loading the critical load is independent of the
sign of Xm(m > 1); thus a pair of different arches can have the same

critical load.

3. For a load distribution that deviates from sinusoidal, the
unsymmetrical components again have serious effects. The critical load
will be dependent upon the sign of ~(m >1). For symmetrical load
distributions, the buckling loads sre approximately proportional to the
total loads (under the respective distributions)that me required to
produce a unit deflection at the center of a straight simply supported
beam without axial restraint.

4. Comparison with experiments shows that the classical criterion
of buckling is applicable for larger values of ~1) say, xl >3. But
the classical criterion overestimates the buckling load for very flat
srches. The experimental buckling load is always higher than that
estimated according to the energy criterion of K&m&n and Tsien but has
a tendency to approach that criterion as Al decreases. For kl~l

(with exact value depending on the initial thrust and support conditions),
the arch deflects continuously and there is no buckling phenomenon.

California Institute of Technolo~
, Pasadena, Calif., January 24, 1952

.
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TABLE I

VAIllESOF Ra AS A FUNCTION OF INITIAL THRUST AND ARCH RISE

(1 - S)lig

1.Omooo

.853815

.649519

.353553

0

2.2

5.0%309

4.990180

4.83STOT

L.5E!ow8

4.0693g8

1.0

1.003000

. $11.EL72

.798113

.636083

.384900

(5.5 - s)@

6.olgJ+36

5.765646

5.392’701

4.792269

3.674233

1.2

1.92338

1.232735

1.120638

. 95cu’84

.665109

2.4

6.379347

6.251454

6.053234

5.709937

4.983975

1.4

1.762039

1.680056

1.562302

1.379012

1.056166

2.6

7.583975

7.413459

7.154805

6.716541

5.817216

1.6 1.8 2.0

2.349955 3.090387 4.ci)Lxm3

2. 2632Q9 2.997755 3.9Q0829

2.137273 2.862332 3.755138

1.938017 2.645717 3.5202%

1.576551 2.244738 3.075201

3 3.5 4

9.708204 1.2.ll@343 14.392306

9.474954 u..8N39u 14.035515

9.123864 n. 371428 13. 5QOOO0

8.5356= 10,624117 12.606599

7.348470 9.124145 10.816653
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40) AND (41)

+2 (E&r (W#2 (Wr % +2 (%)m b’dcrp (%L ‘a .-
.,

0.0665>
.08824
.1170
.1569
.2121
.2817

“.3%3
.4302
.W2
.6307
.7840
.*l

–,

1.331
1.471
1.672
1.961
2.357
2.817
3.243
3.595
3.847
4.2Q4
4.480
4.6s6

m.
0.3785

.5635

.7257

.8ea6
1.0690
1.2699
1.4808
1.6931
2.110
2.609
3.096

) .01334
.01773
.02372
.03259
.04744
.07663
.1339
.lm
.2534”
.3428
. 43%
.5267

-,1

0.3828
-5656
ml:

1.0110
1.1947
1.4443
1.7077
2.2099
2.7936
3.3467

r

1.334
1.478
1.694
2.037
2.636
3.832

::34
9.748

11.43
12.33
13.17

).05
.06

:2!
.09
.10
.I.l
.lZ?
.13
.15
.175
.20

Imag.
1.306
1.742
2.297
2.958
3.689
4.443
5.190
5.919
7.322
8.997

Lo. 616

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0
3.5
4.0

).010
.012
.014
.016
.o18
.020
.022
.024
.026
.030
.035
.040

1.3i2
1.761
2.348
:.oE#

4:999
6.036
7.022
8.85.5

10.99
13.02

.

,“

1.303
1.396
1.495
1.5$)2
1.677
1.749
1.&28
1.855
1.894
1.51

- 1.gg7
2.cK28

InElg.
o.2@
.4g6
.6668
.8272
.9838

1.1381
1.2932
1.4403
1.7354
2.096
2.4x

-.
1.240
1.562
1.9-25
2.309
2.702
3.096
3.489
3.879

;:E
6.318

0.1325
.1742
.2264
.2glo
.3662
.4473
.5296
.6108
.6900
.8432
1.027
1.205 Z

---.
0.3640 1.289

.5540 1.692

.7235 2.179

.8940 2.724
1.0715 3.298
l.@w ,3.879
1.4388 4.455
1.6226 . 5.022
L$M348 6.130
2.426 . 7.470
2.Eu6 8.709

0.2606
.3349
.4187
.5094
.&039
.6998
.7955
.8906
.9848

1.170
1.398
1.622

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0
3.5
4.0

).10
.12
.14
.16
.I.8
.20
.22
.24
.26
.30
.35
.40

1.325
1.451
lb 617
1.81J3
2.Q35
2.237
2.407
2.545
;.gg

2:934
3.013

).20
.24
.28
.32
.36
.40
.44
.48
.52
.60
.70
.&)

‘?
.

b2Jk~ = 0.4

0.5C02
.62I2
.7456
.8716
.WJo

1.124
l.&Jo
1.376
l.ylo
1.749
2.058
2.365

1.2y3
1.294
1.332
1.362
1.386
1.405
l.kl
1.433
1.443

-1.458
1.470
1.478

-.
-.
Imag.
1.612
1.853
2.091
2.331
2.571
2.810
3.288
3.881
4.471

-

-.
1.202
1.453
1.733
2.024
2.319
2.615
2.9u
3.m
3.789
4.510
5.224

-.
0.1111

.3746
:5429

%gj

l.ogll
1.2174
1.4640
1.764.0
2.0581

1.276
1.340
1.400
1.452
1.495
1.535
1.557
1.580
1.598
1.625
1.648
1.663 .

).40

:$
.64
.72
.89
.l?a
.!36

L.04
L.@
L.hO
L.&l

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0

?:2

).30
.36
.42
.48
.54
.60
.66
.72
.78
.90

L.05
L.20

0.3829
.4824
.%79
.6968
.Eknl
.9208

1.o28
1.137
1.246
i.463
1.7’30
1.996

Im4g.
IJ.u9g.
0.3177

.4637
;;$:

.8181

.5236
1. I.242
1.36EJ8
1.6048
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TAME II

.. . ..— A- l.. \ I- \ .— - . ..-— —... -—. —....-. /1.. . .— /,.. \ - . . .

(b) m=s

I 1 I 1

Fur

m = 0.05x3/Ll = 0.01
,

0.05623 1.125 bag.
.07031 1.167 0.3762
.08540 1.220 .5617
.1030 1.287 .TL83
.u236 1.374 .8530
.1473 1.473 1.0025
.1759 1.598 1.1425
.a3g8 1.748 1.2817

------- ------ —--&-
------- ----- ------

%pl = 0.2

0.010
.012
.014
.016
.o18
.020
.022
.024

-----
-----

0. 01J25
.01402
. 01-pl-?
.02069
.02490
. 02$’$X3
.03642
. 044&l

-------
-------

1.125
1.16!3
1.223
1.293
1.383
1.499
1.655
1.85-!3
-----
-----

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4’
3.0
4.0

Imag.
0.3779

.5647

.7342

.8622
1.CQCO
1. u265
1. 26u
----.-
------

m.
1.312
1.762
2.364
3.088
3.996
5.083
6.381
-----
-----

0.05
.06
.07
.08
.09
.10
.ll
.12

----
----

%.
1.308
l.m
2.323
3.035
3.894
4.!3)3
6.op4
-----
--—-

A3/Ll = 0.1

1.122
1.162
1.21J.
1.270
1.338
1.414
1.496
1.5131
1.663
-----
-----

1.117
l.la
1.186
1.225
1.264
1.301
1.336
1.367
1.395
1.441
1.51.2

0.9965
1.295
1.TL6
2.249
2.893
3.649
4.476
5.386
6.3h8
-----
-----

1.0
1.2
1.4
1.6
1.8
2.0
2.2
!2.4
2.6

:::

0.10
.12
.14
.16
.18
.20
.22
.24
.26

0. I.IJ2
.1395
.1696
.2032
.2408
.2828
. 32%’
.3794
.4324

0.1463
.3693
.5538
.7W
.8587

1. w25
1.1466
1.29%)
1.4486
------
------

0.20
.24
.28
.32
.36
.40
.44

:2
.60
.8)

0.2234
. 27@
.3321
.3919
.4549
.5203
.977
.6562
.725J+
.8644

1.209

J

O;j%j -:

.6594 2:036

.8163 2.5I.6

.9601 3.o38
I.lol 3.589
1.2416 4.159
l.yml 4.740
1.6620 5.913
2.3557 8.EW

---- ------
---- ------

0.30
.36
.42
.48
:%

.66

.72

.78
:90

1.05
1.20
-

0.3327
.4082
.4867
.5677
.6503
.7341
.8185
.5Q32
.9891

1.158
1.369
1.579

1.109
1.134
1.159
1.183
1.204
1.224 .
1.240
1.254
1.267
1..286
1.303
1.315

1.101
1.IJ9
1.135
1.150
1.163
1.173
1.u32
1.189
1.lg6
1.205
1.213
1.219

m.
m.
0.2668

.4428

.54333

.noo

. Q283

.9422
1.0525
1.2508
1.5276
1.7818

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
3.0
3.5
4.0
—

0.40
.48

:2
.72
.&l

:2
1.04
1.X)
1.40
l.a

0.4402
.5370
.63%
.7363
. 83’n
.985

1.040
1.142
1.243
1.446
1.699
1.9511

m. m.
0.2086 1.213

.4133 1.501

.5854 1.828

.7293 2.U34

.%36 2.556

.Bk 2.938
1.w6 3.326
1.2~4 3.716
1.4w 4.4g6
1.7944 5.465
2.092 6.423

7

. .
L
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.
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VALUES OF Rcr

FF
h lo

~3/h “

0.01 1.OCOO

.05 ------

.1 ------

E

1.0

------
------
------
------
------
.-----

A .

./. . ..;

WI
4=

TABI.Z III

~R A SINLE!OWY LOAIE?’DARCH HAVING HOMERO kl AND & 03KWJ!ED I?R3MEQUATION (44)

(a) m=s

1.2

1.3121.
1.3079
1.2953

1.2547
1.2132
------

1.2

1.31.21
1.30&l

1.2W7
1.2397
1.2017
------

T
1.4 1.6

1.7615 2.3637
1.7499 2,3228
1.v61 2.2493

1.6105 2.0359
l.yml 1.82&
1.4195 1,6Tr2

1.4

1.8 2.0 2.2 2.4 2.6 3.0 3.3 4.0

3.0881 3.9955 5.of377 6.38u2 7. 57!M 9.69&I 12.1039 14.3783
3.0349 3.8949 4.5029 6.0540 7.2662 9.3967 11.7&31 14.0371

2.W6 3. 64% 4.4765 5.3864 6.3485 8.3545 10.7E7 K&6:
2.5164 3.0383 3.58Y2 4.1589 4.7396 5.9134 7.3769
2.18!a 2.5562 2.93% 3.3269 3.7199 4.4964 5.4650 6:4228
1.9510 2.2332 2.5196 P. &181 3.0971 3.6657 4.3sQ6 5.lm2

(b) m-2

1.6 I 1.8 I 2.0 I 2.2

TIT
2.3476 3.0837 3.9775 4.9991
2.2970 2.9577 3.&989 4.4435
2.179 2.7243 3.2982 3.8788
1.@18 2.3091 2.7019 3.0964
1.7328 2.0236 2.3185 2.6150
1.61.EII 1.8ZKI 2.0910 2.3306

I..76I.2
1.7422
1.6917

1.5ti6
1.4534
------

,

2.4

6.0364
5.1904
4.4548
3.4892

2.9106
2.5705

2.6

7.0223
5.9191

5.0223
3.8788
3.204
2.alw

3.0

8.8561
7.3218
6.1296
4.64TES
3.7WJ3
3.2878

~

3.5 4.0

10.9893 13.@35
8.9975 10.6163
7.4705 8.7094

:.;JOO ;.51C

3:8814 4:4714

. J

. . .

.,
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!,

[..

%.

1.2

1.5
2.0
2.5
3.0
4.0
3.0
5.0
7.0
9.0
3.0

TAmEIv TABLE v

VALUES OF k FROM VALUES OF Rcr FOR A SINUSOIDAL ARCH

EQUATION (62) WITH A CENTRAL CON~ LOAD

[

Al

1.0
1.2

1.4
1.6
1.8
2.0

2.2
2.4

k

0.1929 x 10-~
.3578
.7075

1.408
2.767
5.k86
10.83
21.70

Al

II
2.6
3.0
3.5
4.0
4.5
5.0
5.5
6.0

R

3;89
3.678
4.716
5.890
7.000
8.072
9.u22

10.156
11.179
12.193

13.201
14.204
15.-206
16.203
17.195

TABLE VI

CRITICAL CONDITIONS FOR CENEWJY LOADED ARCHES WITH

~ = o.oo5x~AND ~ = o.040L~

()B1 cr

0.3713
.6310
.9895

1.4003
1.9770
3.0494
4.039
4.99
5.922
6.841
7.752

(?2)cr

0.0088
.01351
.03263
.1157
. 21T’j

.3605

.4831

.5991

.7120

.8231

.9332

Rcr

0.651
.996

1.878
3.048
4.193
6.236
8.140
9.986

u.800
13.596
15.380

(B3)cr

0.075
.108
.196
.290
.380
.541
.693
.842

1:F6
I..282

(“+m

%

1.28
1.84
2.79

3.57
3.73
3.78
3.79
3.80
3.80
3.8I.
3.81

3.85
4.50
7.21
9.74
11.63
15.16
18.7
22.3
25.9
29.5
33.1

Max. critical

0trem3

(y)

8.4 X 103
10.4
16.3
!zL.8
25.1
30.9
36.8

$:;
~.:
.

‘Highest outer fiber stress in arches representative of test speci-

(mens E = 10.3 x 106 psi, L= 18 in., and t = 0.25 in.). T

.——.—..——-— —.— ———— -—
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I

1.0

.95

.9

.82

.70

.60

.50

——

1.0

1.000
--.--

-----

-----

-----

-----

-----

1.2

1.312

1.288

1,265

1.226

1.200
-----

-----

TABLE VII

EFFECT OF FLEXIBILITY OF SUPPORT ON CRITICAL LOAD

(a) Values of ~r ae a function of P

T
1.4 1.6

1.762 2.350

1.716 2.27’7

1.671 2.2o4

1.584 2.062

1.504 1.924

1.437, 1.795
----- 1.681

1.8

3.080

2.983

2.876

2.664

2.457

2.256

2.066

2.2

5.096

4.895

4.694

4.295

3.897

3.505

3.121

2.4

6.3&I

6.135

5.873

5.349
4.829

4,312

3.E!03

{b) Solution of equation (71)

B I (~l)o

I
1.0 2.345

.95 2.h6

.90 2.471

.aa 2.622

.70 2.E!03
‘ .& 3.028

.x 3.317
—

●
� �✎

✌

✎ ✎✎ ✎ ✎ ✎ ✎ ‘:

2.6

7.594

7.391
7.166

6.y34

5.917

3.255

4,598

3.0

9.’708

9.564

9.ho2

9.000

8.439

7.587
6.565

3.5

12.12

U.ol

11. aa

=.58

11.17

10.59

9.6%

4.0

14.39

14.30

14.2Q
13.95
13.62
13.16
1.2.48

i-.~-

*._
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.

TABLE VIII

VALUES OF Ra FOR A SINUSOIDAL ARCH WITH A CENTRAL

ELASTIC SUPPORT AND q = ~ sin ~

\

v
Al

1.42
1.60
1.74
1.8!3

2.00

2.20

2.40

3.00
3.50
4.00

0.5

2.82
3.34
3.87
4.11
;.:;

7:43
10.45
17.73
14.92

1.0 1.5 2.0 3.0

5.10
5.32

6.25
7.40
8.43

11.17
13.32
15.42

No solution in this

region \

7.61,, 9.28 12.46
8.54 9.62 11.66
9.38 10.29 12.oo
11.84 12.49 13.70
13.87 14.40 16.40
15.89 16.34 17.20

,

,,

,,Q

*

I
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Specimen

(1)

1

2

3
4

5

6

7

;
10
n
12
13

14

15

16

17

18

19

20

21

22.
23
24
25

E=

Le@h
(in.)

Width
(In.)

O.yo

.495

.m

.499

.501

.493

.502

.502

.34

.%5

%
.%3

.m

.W

.501

.501

. y2

.499

.%3

.502

.501

.499

.X@

. yo

TmLEIx

L’hickness
(in.)

0.249

.1&35

.249

.249

.249

.249

.25!)

.251

.251

.250

.250

.250

.250

.374

.375

.374

.374

.374

.374

.374

.374

.186

.185

.185

.186

%

3.78

9.12

4.25
3.32

2.63

1.83

4.71
4.07
3.67
3.30

;:&.
5.07

1.86

1.67

1.38

1.265

2.44

2.08

1.34

2.43

;.08
5.43
7.23
3.15

0.0138

.0055

.oog7

.@355

.0417

.0146

.0842

.0496

.0666

.0178

.0264

.0015

.0957

.0076

.0170

.0013

.0141

.0015

.0043

.0244

. OIJ.2

.0058

.0031

.0225

.0007

%

0.136

.344

.146

.114

.Og

.063

.159

.167

.164

.123

.x26

.185

.131

.0592

.0610

.0459

.0472

.0850

.0707

.0500

.0883

.237

.236

.257

.31J.

Bucldfw
load
(lb)

82.7

85.7

107.0
73.7

33.9

16.2

98.5
94.4
W.o
60.4
96.7

139.8
u5.8

83.3

73.0

(2)

(2)

157.3

129.9

(2)

176.9

;:$

73:0

(~)ex’p

5.19

16.37

6.72
4.63

2.11

1.04

6.07
5.72
4.83
3.70
5.95
8.55
6.98

1.02

.8436

------

------

1.93

1.60

------

2.16

9.70
10.96
1.2.8g
14.73

(R-x)em

~~r)d-s

0.880

1.oo4

.955

.915

.653

.671

.884

.976

.912$

.781.
1.003

.926

.925

.630

.703

-.---

-----

.666

*773

-----

.“(45

.930

.978
1.031
1.016

%aterial: specimens1 to13 ma 22 b 25, 2k-T3; swdmens 14 to 21, 753-T6.

10.3 x 107 PSI.

%pecimen did not buckle. 1
=@?S=

.

*
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Figure l.- Buckling mode for a high arch.

JIJ. J+JW
,H
--—- ——__--- G

Figure 2.- buckling mode for a low arch.

Figure 3.- Coordinate system.
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Figure h.- Relation between B1 and

sinusoidal arch under a

R

/

b’——. —— ——

R for syrametrlcal buckling of a

ainuaoidal load.

it)b.—— ——— ———
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En

F@ure 5.- Relations between Bl, Bn, and R for a SinUSOMd ~ch

which buckles fn the -nth mode.
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had on a sinusoidal arch as a function of arch rise.
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Figure 7.- Defomnation history of a sinusoidal arch.
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Figure 8.- Change of critical load due to initial thrust Ho.

(f%r)s = (Rar)sd - (Rcr)8.~; s =HOL2/JT%.
8’
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(b) m = 3; aslal = -1/3.

,.

I.

\

(c) m = 3;

Figure 9.- Examples of low arches

-“
a3/al = l/3.

having nonsinusoidal center lines.
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(B21cr

,X2

,

I8=0.01

8.0.0 5

/ y

8=0.1

8=o.E
.

.0.3

a UO.4

3 4 5

A,

(a) Ratio Of (B2)cr/~2 = (b2) .rla2.

Figure 10. - Solution of equation

c .5

2.0

8 =CLol

I.8

1.6 -

I.4

1.2

T

1.0
2 3 4 6

A,

(b) Ratio of (B3)cr/~3 = (b3)cr/a3”

(hO)form=2 andm=s.
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(a) m=2;8=~.

Figure ~.- Ru (SiIIUaOidd) for arch forms
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(b) m=3;8=,~.

Figure U.. - Concludd. 2
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‘(Rcr)cOnc(~2 = +% AI,b=4%AI)
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Figure 12. - Rcr for arches under a concentrated central load.
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I.0
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lkn-Bn]
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0

L
I
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,

\

/ Y
/

33+3

62-A~

3 4
R

5 6

Figure 13. - Variatdon with load of first three modes of tio centrally

loaded arches having A@l = 0.003 and L3~l = O .O@’.
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Figure 14. - Effect of support flexibility on critical load. ~ . —.
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.Figure l~. - Critlcal load of a 6inusoidal arch hating a central eLa6tic

support . v = 2L3a; /#EI.
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e No buokling occurred
— below here

2 3 4 5 6 7

Figure 16. - Theoretical and

Al

experimental results.

o

———.

-=@

———

9 )

10
01
-F
0

— –,—..<

..:



—

—

rl
----

)/, I
I T II I

I J

—- 1 4+-I 1

I-H–1

i~
Ld -- \/ i-lWi-J

.A

J

6“

SECTION A-A

Figure 17. - Testf.ng jig.
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Figure 18. - Testing
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apparatus with specimen h place.
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Figure 19. - Knife-edge fitting.
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